The Neural Energy Decoder: Energy Disaggregation by Combining Binary Subcomponents

نویسندگان

  • Henning Lange
  • Mario Bergés
چکیده

In this paper a novel approach for energy disaggregation is introduced that identifies additive sub-components of the power signal in an unsupervised way from high-frequency measurements of current. In a subsequent step, these sub-components are combined to create appliance power traces. Once the subcomponents that constitute an appliance are identified, energy disaggregation can be viewed as non-linear filtering of the current signal. The approach introduced here tries to avoid numerous pitfalls of existing energy disaggregation techniques such as computational complexity issues, data transmission limitations and prior knowledge of appliances. We test the approach on a publicly available dataset and report an overall disaggregation error of 0.07.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Study on Energy Disaggregation via Deep Learning

Energy disaggregation is the task of estimating power consumption of each individual appliance from the whole-house electric signals. In this paper, we study this task based on deep learning methods which have achieved a lot of success in various domains recently. We introduce the feature extraction method that uses multiple parallel convolutional layers of varying filter sizes and present an L...

متن کامل

Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network

In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D12 ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boilin...

متن کامل

Energy Disaggregation via Discriminative Sparse Coding

Energy disaggregation is the task of taking a whole-home energy signal and separating it into its component appliances. Studies have shown that having devicelevel energy information can cause users to conserve significant amounts of energy, but current electricity meters only report whole-home data. Thus, developing algorithmic methods for disaggregation presents a key technical challenge in th...

متن کامل

Efficient Learning of Sparse Representations with an Energy-Based Model

We describe a novel unsupervised method for learning sparse, overcomplete features. The model uses a linear encoder, and a linear decoder preceded by a sparsifying non-linearity that turns a code vector into a quasi-binary sparse code vector. Given an input, the optimal code minimizes the distance between the output of the decoder and the input patch while being as similar as possible to the en...

متن کامل

Energy Disaggregation via Learning Powerlets and Sparse Coding

In this paper, we consider the problem of energy disaggregation, i.e., decomposing a whole home electricity signal into its component appliances. We propose a new supervised algorithm, which in the learning stage, automatically extracts signature consumption patterns of each device by modeling the device as a mixture of dynamical systems. In order to extract signature consumption patterns of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016